• Smart City
  • Location Intelligence
  • Infrastructures
  • Öffentliche Sicherheit
  • Smart Environment
  • GeoAI
  • Smart City
  • Location Intelligence
  • Infrastructures
  • Öffentliche Sicherheit
  • Smart Environment
  • GeoAI
Themen
3D Augmented Reality Big Data BIM Breitbandausbau Bürgerbeteiligung Case Study Covid-19 Dashboard Digital Twin DigitalTwin Health Screening Imagery Indoor Navigation IoT Kartografie Klimawandel KRITIS Lagebild Last Mile Delivery Machine Learning Mobilität Monitoring Nachhaltigkeit Open Data Operational Intelligence Realtime Analytics Stadtplanung Standortanalyse Startups Supply Chain Tourenplanung Umweltmonitoring
Facebook
Twitter
Instagram
YouTube
LinkedIn
RSS
  • Location Intelligence
  • Smart Environment
  • Smart City
  • Infrastructures
  • GeoAI
Abonnieren
  • Location Intelligence

Location Intelligence: Kunden finden und verstehen

  • 5 minute read
  • Roland Schenkel
0
0
0
0

Genaue Kenntnisse über die Zielgruppe sind fundamental für ein erfolgreiches Geschäft – vor allem für Unternehmen aus dem Business-to-Consumer-Bereich (B2C). Location Intelligence und räumliche Analysen können dabei einen entscheidenden Beitrag leisten. Dank geografischer Analysemethoden schärfte das Schweizer Re- und Upcycling-Unternehmen Mr. Green einerseits das Verständnis über die Kundensegmente und ist nun andererseits in der Lage, räumliche Voraussagen zu treffen, wo sich mit hoher Wahrscheinlichkeit weitere Kundinnen und Kunden finden lassen.

Bei der Entwicklung einer Marketingstrategie stehen Fragen nach der Zielgruppe im Zentrum: Wer sind meine Kund*innen? Und wo finde ich sie? Für alle Firmen, insbesondere aber für kleinere Unternehmen und Startups, in denen Marketing-Budgets oft knapp sind, ist die stichhaltige und möglichst effiziente Beantwortung dieser Punkte wichtig. Unterstützung bieten aussagekräftige Karten, die mit Informationen aus Geoinformationssystemen erstellt wurden.

Bei der richtigen Marketingstrategie geht es in einem ersten Schritt darum, das Zielkundenprofil zu schärfen und Fragen zu beantworten:

  • Wo wohnen die Menschen, die meine Produkte kaufen?
  • Wie ist die Altersverteilung?
  • Welcher sozialen Schicht gehören sie an?
  • Welche Präferenzen haben sie?

Gibt es dann genauere Erkenntnisse über das Zielkundenprofil – oder die verschiedenen Profile bzw. Segmente – muss in einem zweiten Schritt analysiert werden, wo sich weitere Kund*innen gewinnen lassen.

Karten sagen mehr als eine Kundenkartei

Viele Unternehmen führen eine Kundenkartei, kennen also die Wohnadresse ihrer Kundschaft. Oder sie erheben vor Ort die Herkunft der Einkaufenden – beispielsweise in Form der Postleitzahl. Diese Daten liegen zumeist strukturiert vor und bieten schon einen beträchtlichen Informationswert. Was aber zumeist fehlt, ist das Verständnis über den geografischen Kontext. So ist es nicht verwunderlich, dass der einfache Schritt von der Tabelle zur digitalen Karte oft schon einen ersten «Wow-Effekt» auslöst. Im Gegensatz zu einer Tabelle realisiert eine Karte sofort einen räumlichen Überblick der Kundenverteilung und bringt – noch ohne eine Analyse – bereits zusätzliche Informationen ans Tageslicht: räumliche Muster. Deutlich werden damit beispielsweise Häufungen von Kunden an bestimmten Orten oder auch Lücken.

Die Karte zeigt die Kundenstandorte

Mit Visualisierungen via Karte beginnen üblicherweise die ersten Überlegungen zu Hypothesen bezüglich der Ursachen der Kundenverteilung. Dazu Valentin Fisler, Mitgründer und Geschäftsführer bei Mr. Green:  «Auf der Map war schön ersichtlich, wo unsere potentiellen Kund*innen wohnen. Eine ideale Ausgangslage, um diese zielgerichtet zu bewerben.»

In einem ersten Analyseschritt kann die Kundendichte dann mit statistischen Methoden hinsichtlich Hot- und Coldspots untersucht werden. Die Resultate dieser Analyse sind mehr als eine visuelle Interpretation der Verteilung: sie sind eine faktenbasierte Auswertung, die statistisch signifikante Aussagen zulässt.

Location Intelligence integriert alle Informationen

Viele Unternehmen erheben keine soziodemografischen Daten über ihre Kunden. Auch im Fall von Mr. Green sind neben der Adresse und weiteren Kontaktdaten nur Transaktionsdaten zu den gekauften Dienstleistungen und Produkten verfügbar. Es fehlen genauere Informationen zur Person, beispielsweise Alter, Geschlecht oder Familienstand. In diesen Fällen können mittels räumlicher Daten und Korrelationsanalysen trotzdem Rückschlüsse auf die bestehende Kundschaft gezogen werden. Denn soziodemografische Daten sind in verschiedenen räumlichen Auflösungen, darunter Hektar-, Block-, Quartier-, Gemeinde- oder PLZ-Ebene, verfügbar oder lassen sich entsprechend erstellen und aggregieren. Mit Location Intelligence können die Informationen dann zu den Kundenadressen und der dort herrschenden Soziodemografie über den räumlichen Zusammenhang verknüpft werden.  

Das Unternehmen Mr. Green überlegte beispielsweise, welche Faktoren an einem Ort die Kundendichte beeinflussen. Typische Faktoren dabei sind die Kaufkraft, Altersverteilungen aber auch räumliche Faktoren wie die Distanz zum nächsten Bahnhof, Restaurant oder Entsorgungsstation.

Dieser Prozess erfordert weitere Datenrecherchen und -aufbereitungen und kann sehr aufwändig sein. Möglicherweise müssen Daten gekauft werden – oder aber es finden sich schlicht und einfach keine passenden Datensätze. Dann gibt es die Option, nach Daten zu suchen, die ein Phänomen zwar nicht direkt, aber indirekt erklären können. Beispielsweise kann die Parteienstärke als Näherungswert, oft auch als Proxy bezeichnet, für das soziale Milieu an einem Ort dienen.

Bei der Hot-/Coldspot-Analyse werden Lücken sichtbar

ArcGIS bietet Zugriff auf viele Daten

Mit dem ArcGIS-System hat ein Unternehmen Zugriff auf verschiedenste Daten aus dem Living Atlas und kann diese auch mit Esri-Demographics-Daten anreichern. Zudem stehen auch offene Daten, beispielsweise von Behörden wie statistischen Ämtern, oder von OpenStreetMap zur Verfügung.

Um herauszufinden, welche Faktoren tatsächlich relevant sind und um ein Voraussagemodell zu trainieren, setzt Mr. Green ein Analysewerkzeug ein, welches eine Adaption des “Random Forest”-Algorithmus von Leo Breiman integriert. Dieser Machine-Learning-Algorithmus trainiert ein Modell anhand erklärender Variablen, welches anschließend eine Vorhersage der abhängigen Variable, hier also der potentiellen Neukunden, erlaubt.

Dank dieser Analyse wurde ein Modell generiert, das einerseits das Zielkundenprofil des Unternehmens aufgrund der erklärenden Variablen schärft und andererseits auf Gebiete angewendet werden kann, für die es dieselben Grundlagendaten aber noch keine Kunden gibt. Selbstverständlich ist auch ein solches Modell mit Unsicherheiten behaftet und die Aussagen müssen jeweils im entsprechenden Kontext betrachtet werden.

Mr. Green war bis dahin vorwiegend im Kanton Zürich tätig. Entsprechend interessierte eine Voraussage für die Nachbarkantone Aargau und Zug, auf die das Modell dann auch entsprechend angewendet wurde.

Fazit: Technologie ist Basis für mehr Nachhaltigkeit

Damit Mr. Green in neuen Städten und Regionen seine Dienstleistungen anbieten kann, sind zunächst Überzeugungskraft und Zeit nötig, um die notwendigen Grundlagen mit den lokalen Behörden auszuarbeiten. Machine Learning und Location Intelligence sind dann die Basis für nachhaltige Expansionsplanung und Marktoptimierung.

Über Mr. Green

Mr. Green ist ein Schweizer Re- und Upcycling-Unternehmen, mit dem gleichnamigen schwedischen Glücksspielunternehmen hat das Startup nichts zu tun. Die Gründer haben sich vor rund zehn Jahren zum Ziel gesetzt, Gesellschaft und Umwelt besser in Einklang zu bringen. Und während sich einst Flaschen und Büchsen auf dem Balkon nicht nur ihrer Studenten-WG gestapelt haben, sammelt heute Mr. Green alles ein und führt sie dem Re- und Up-Cycling-Kreislauf zu. Das Prinzip ist einfach: Alle Wertstoffe wie Elektroschrott, Batterien, Dosen, Getränkekartons, Kaffeekapseln, Pet-, PE- und Glasflaschen oder Plastik werden in einem Sack gesammelt und am Abholtag vor die Türe gestellt. Den Rest übernimmt Mr. Green: Sortierung und Schleppen zu den verschiedenen Sammelstellen wird Privat- und Geschäftskunden abgenommen. Zudem bietet Mr. Green Upcycling-Produkte und nachhaltige Gadgets für den Alltag in ihrem Onlineshop an.


Share
Tweet
Share
Share
Share
Related Topics
  • Machine Learning
  • Standortanalyse
Voriger Artikel
  • Location Intelligence

Esri Konferenz 2021: Die Highlights aus dem Berliner Studio

  • WhereNext Redaktion
Weiterlesen
Nächster Artikel
  • Infrastructures

Wie viele E-Ladesäulen braucht eine Stadt?

  • Norbert Stankus
Weiterlesen
Auch interessant
Weiterlesen
  • Location Intelligence

Mit ArcGIS Immobilienmärkte besser verstehen – Einblicke in die strategische Nutzung von Geodaten  

  • Andreas Kunert
  • 30. April 2025
Weiterlesen
  • Location Intelligence

Esri Konferenz 2024: The Power of Where

  • WhereNext Redaktion
  • 2. Dezember 2024
Weiterlesen
  • Location Intelligence

Digitalisierungssprung in Bayern: ArcGIS Pro Virtualisierung optimiert Staatsbauverwaltung

  • WhereNext Redaktion
  • 20. März 2024
Weiterlesen
  • Location Intelligence

Der Digitale Projektzwilling revolutioniert die Dorsch Gruppe

  • WhereNext Redaktion
  • 20. März 2024
Zug im Hauptbahnhof Frankfurt am Main in Deutschland
Weiterlesen
  • Infrastructures
  • Location Intelligence

Wie das Venture TracE die Digitalisierung bei der Deutschen Bahn mit GIS und Location Services vorantreibt

  • WhereNext Redaktion
  • 26. Januar 2024
Weiterlesen
  • Location Intelligence

Unterstützung von Kriseneinsätzen und Großübungen von Hilfsorganisationen mit Geo- und Fernerkundungsdaten

  • WhereNext Redaktion
  • 9. Dezember 2023
Jürgen Schomakers eröffnet die Esri Konferenz 2023 in Bonn
Weiterlesen
  • Location Intelligence

Esri Konferenz 2023: Zwei Tage GIS und Digital Twins

  • WhereNext Redaktion
  • 30. November 2023
Weiterlesen
  • Location Intelligence

Location Intelligence: Büroflächen nach der Pandemie neu gestalten

  • WhereNext Redaktion
  • 7. August 2023
Roland Schenkel
berät Unternehmen zu den Tech-Themen Risk Management & Digital Supply Chain.
  • Digitale Nähe schaffen: Wie eine mobile App Kommunen und Bürger verbindet

    Weiterlesen
  • Starkregenvorsorge: Wie sich die Stadt Göttingen vor Unwetter schützt

    Weiterlesen
  • Wald Borkenkäfer

    GIS im Kampf gegen Waldschädlinge

    Weiterlesen
WHERENEXT

Das Fachmagazin für Best Practices, Interviews und Success Stories rund um Location Intelligence.

Herausgegeben von Esri Deutschland und Esri Schweiz – den Anbietern für Geospatial Infrastructure.

MEISTGELESEN
  • Navigating Tomorrow’s Threats: Zukunft sichern durch Geo-Intelligence und starke Allianzen 
  • Spatial Finance: Was der Begriff bedeutet und wie Sie sich darauf vorbereiten
  • Globale Hafeninfrastrukturen im Klimawandel: Eine interaktive Analyse der Risiken
INFO
  • About
  • Impressum
  • Datenschutzerklärung
  • Esri Deutschland
  • Esri Schweiz
  • ArcGIS

Gib dein Suchwort ein und drücke Enter.

X